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Heat transfer from a pipe in a soil heating system has been numerically examined in this study. The
Brinkman-extended Darcy equations are used to model the flow in the soil while Navier–Stokes equa-
tions are used for that above the soil. A parametric study has been performed to investigate the effects
of Rayleigh number, Darcy number, and air layer thickness on the flow patterns and heat transfer rates.
The results show that heat transfer increases with the Rayleigh number, but the convective strength
decreases with a reduction in the Darcy number. The present results confirm the existence of a critical
fluid layer thickness that leads to a minimum heat transfer from the pipe. However, the critical layer
thickness is a more complicated function of Rayleigh number and Darcy number than that reported in
the previous studies.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction transfer rate from the pipe. Thus, another objective of the present
Heat transfer from a buried pipe is involved in many important
engineering applications, which include power cables, under-
ground pipelines for oil and gas transport, and the disposal of nu-
clear wastes. The problem considered in the present study has
applications related to soil heating in agriculture as well as in-floor
heating in residence and industry. These heating systems are often
used in conjunction with solar or geothermal energy systems. To
adequately model these heating systems, one needs to consider
the interaction between the overlaying fluid layer and the porous
medium in which a heated pipe is buried.

Heat transfer from a buried pipe has been considered for various
modes and configurations [1–9]. However, most previous studies
have not explicitly considered the interaction between the superim-
posed fluid layer and the porous medium in which the pipe is buried.
To simplify the analysis, the previous studies have either assumed an
impermeable interface [5–9] or applied a simplified condition at the
permeable interface [3]. In either case, they completely ignored the
effect of convection in the superimposed fluid layer. Although Oos-
thuizen and Naylor [8] included the interaction between the super-
imposed fluid layer and the porous medium in their analysis, they
assumed an impermeable interface so that the interaction was lim-
ited to heat transfer only. For a pipe buried in a semi-infinite porous
medium, Bau [3] has reported that there exists a critical buried depth
that leads to minimal heat transfer from the pipe. On the other hand,
Oosthuizen and Naylor [8] have reported the existence of a critical
thickness of the superimposed fluid layer that minimizes the heat
ll rights reserved.
study is to verify the validity of the above claims.

2. Formulation and numerical method

The geometry considered is a pipe with a radius of ri buried hor-
izontally in a soil layer at a depth of d (Fig. 1). A fluid layer (air)
with a thickness of L is laid on top of the soil. The interface between
the two layers is assumed permeable so that air is the common
medium for heat and mass transfer involved. The top surface of
the air layer is assumed impermeable and maintained at a constant
temperature Tc while the buried pipe is maintained at a higher
temperature Th. The soil layer is assumed to saturate with air. For
simplicity, the effect of moisture which may be present in air has
been neglected in the current analysis.

Assume that the convective flow induced by the heated pipe is
steady and two-dimensional. Thus the governing equations for the
soil layer can be formulated by the Brinkman-extended Darcy
equations [10–12]:
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Fig. 1. A pipe buried horizontally in a semi-infinite soil with a superimposed air
layer.

Nomenclature

cp specific heat [kJ/kg K]
Da Darcy number K=r2

i
d buried depth [m]
g gravitational acceleration [m/s2]
h heat transfer coefficient [W/m2 K]
K permeability [m2]
k thermal conductivity [W/m K]
L thickness of the superimposed fluid layer [m]
Nu Nusselt number, hri /k
P grid control function
Pr Prandtl number, m/a
p pressure [N/m2]
Q grid control function
ri radius of buried pipe [m]
Ra Rayleigh number, gb(Th-Tc)r3

i /am

T temperature [K]
u, v velocity in the x- and y-direction [m/s]
x, y Cartesian coordinates [m]
w width of the physical domain [m]
a thermal diffusivity, k/qcp [m2/s]
b coefficient of thermal expansion [1/K]
g body-fitted coordinate
H dimensionless temperature, (T-Tc)/(Th-Tc)
l dynamic viscosity [kg/m s]
~l effective viscosity [kg/m s]
m kinematic viscosity [m2/s]
q density [kg/m3]
n body-fitted coordinate
W dimensionless stream function
X dimensionless vorticity
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The governing equations for the fluid layer are the Navier–Stokes
equations:

@u2

@x
þ @v2

@y
¼ 0; ð5Þ

@p2

@x
¼ l2

@2u2

@x2 þ
@2u2

@y2

 !
� q2 u2

@u2

@x
þ v2

@u2

@y

� �
; ð6Þ

@p2

@y
¼ �q2g þ l2

@2v2

@x2 þ
@2v2

@y2

 !
� q2 u2

@v2

@x
þ v2

@v2

@y

� �
; ð7Þ

u2
@T2

@x
þ v2

@T2

@y
¼ a2

@2T2

@x2 þ
@2T2

@y2

" #
; ð8Þ

where the subscripts 1 and 2 denote the soil and fluid layers,
respectively. The effective viscosity that appears in the Brinkman
term (Eqs. (2) and (3)) is assumed to be the same as the fluid viscos-
ity (i.e., ~l ¼ l). In line with Boussinesq approximation (Eq. (9)), the
variation of density is only accounted for in the buoyancy term. All
other thermophysical properties are assumed constant.

q � qc½1� bðT � TcÞ�: ð9Þ

Since the physical domain is symmetrical, only one half of the do-
main [�w 6 x 6 0 and �w 6 y 6 (d + L)] is considered for computa-
tions. Thus, the boundary conditions are given by
At r ¼ ri; p � h � 2p; T1 ¼ Th; ur1 ¼ 0: ð10aÞ
At y ¼ ðdþ LÞ; �w � x � 0; T2 ¼ Tc; u2 ¼ v2 ¼ 0: ð10bÞ
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Boundary conditions (10c) and (10d) imply that heat and fluid
flow far away from the pipe are negligibly small if the domain
considered is sufficiently large. No-slip condition is applied at
the impermeable top boundary. In addition to the boundary con-
ditions, appropriate conditions need to be specified at the interface
between the fluid and porous regions. The interface conditions
applied in the present study are the continuity of temperature,
heat flux, normal and tangential velocity, shear stress and pressure
[10–14]:
T1 ¼ T2; ð11aÞ
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Due to the complexity of the geometry involved, body-fitted coordi-
nates have been employed [15–16]. A computational grid used for
the present study is shown in Fig. 2. The governing equations
(Eqs. (1)–(8)) along with the boundary conditions (Eqs. (10a)–
(10e)) and interface conditions (Eqs. (11a)–(11f)) are transformed
to the computational domain accordingly.

After introducing the stream functions and vorticity, the dimen-
sionless governing equations for the porous layer are given by:



Fig. 2. Computational grid for the present study.
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For the fluid layer, they are
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is the Laplacian operator in the transformed domain. a, b, and c are
the transformation coefficients while J is the Jacobian, P and Q are
the grid control functions. The governing parameters are the Darcy
number (Da = K/r2

i ), Rayleigh number (Ra = gb(Th � Tc)r3
i /am) and

Prandtl number (Pr = m/a). Air (Pr = 0.7) is the working fluid consid-
ered in the present study.

Similarly, the boundary conditions (Eqs. (10a)–(10e)) in the
transformed domain are given by

At g ¼ go; no � n � nm; H1 ¼ 1; W1 ¼ 0: ð19aÞ
At g ¼ gn; no � n � nm; H2 ¼ 0; W2 ¼ 0: ð19bÞ
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where the subscript ‘‘int” refers to the location of the interface.
The transformed interface conditions (Eqs. (11a)–(11f)) are
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The governing equations along with the boundary conditions
are solved by finite difference method [9,16]. The interface condi-
tions are implemented using imaginary nodes as described by Rana
et al. [17]. For the present study, the dimensionless buried depth of
the pipe is fixed at five (d/ri = 5) while the fluid layer thicknesses is
varied (0.5 6 L/ri 6 3.5). From our previous work [9], it has been
found that a dimensionless width (w/ri) of 30 is sufficient to repre-
sent a semi-infinite medium. In addition, a uniform grid of
121 � 151 in the transformed domain (121 � 121 for the porous
medium and 121 � 31 for the superimposed fluid layer) offers
the best results in terms of the computational efficiency and accu-
racy. It should be noted that a further increase in the refinement
does not produce any significant improvement in the heat transfer
results. As an additional check on the accuracy of the numerical re-
sults, an overall energy balance has been performed after each cal-
culation, which yields a relative error of less than 3%.

3. Results and discussion

A parametric study has been performed over a wide range of the
governing parameters (i.e., 0.5 6 L/ri 6 3.5, 0.0005 6 Da 6 0.05, and
103
6 Ra 6 105) for air (Pr = 0.7).

3.1. Effects of thermal buoyancy

The effects of thermal buoyancy (i.e., the Rayleigh number) on
the flow and temperature fields can be examined from Fig. 3. For
a better observation of the flow structure and temperature field,
results are only presented for region in the vicinity of the pipe
(�15 6 X 6 0,�10 6 Y 6 7). At Ra = 103, the flow field is dominated
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Fig. 3. Effects of Rayleigh number on the flow and temperature fields of a saturated soil layer with a superimposed air layer of L/ri = 2 (Da = 0.0005, DH = 0.1; DW = 0.1, 2, and
5 for Ra = 103, 104, and 105, respectively).
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Fig. 4. Effects of the thickness of a superimposed air layer and Darcy number on the flow fields for Ra = 104 (DW = 5, 2, and 1 for Da = 0.05, 0.005, and 0.0005, respectively).

6024 C.C. Ngo, F.C. Lai / International Journal of Heat and Mass Transfer 52 (2009) 6021–6027
by a primary flow which constitutes of heated fluid rising along the
pipe wall to the top boundary and returning from the left boundary
when it is cooled. Also, there is a secondary flow, a small recircu-
lating cell, which is formed within the air layer near the top of
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Fig. 5. Effects of the thickness of a superimposed air layer and Darcy number on the temperature fields for Ra = 104 (DH = 0.1).
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the pipe. The overall strength of convection is weak and heat trans-
fer remains in the conduction mode, which is evident from the
nearly concentric isotherms displayed in the figure.

As the Rayleigh number increases, convection is further devel-
oped and the flow field is prevailed by a single large cell with
the eye of the cell mainly confined in the air layer. Notice that
the streamlines in Fig. 3 are plotted using a larger interval for a
higher Rayleigh number (i.e., DW = 0.1, 2, and 5 for Ra = 103, 104,
and 105, respectively) for better observation of the flow structure
in the fluid layer. Also, it is noticed that due to a large flow resis-
tance in the soil layer, the convective cell is confined mostly in
the air layer. From the isotherms, the development of thermal
boundary layer around the pipe can be clearly observed. With an
increase in the Rayleigh number, a steeper temperature gradient
can be observed at the lower part of the pipe. In addition, the for-
mation of a thermal plume near the top of the pipe can be observed
as the Rayleigh number increases. The isotherms within the air
layer are perturbed due to the formation of recirculating cell.

3.2. Effects of air layer thickness and Darcy number

The effects of the superimposed air layer thickness and Darcy
number on the flow and temperature fields are shown in Figs. 4
and 5. Recall that the Darcy number is defined as K/r2

i . Thus, for a
given pipe size, a large Darcy number implies that the soil layer
is more permeable. For a given Rayleigh number, it is observed that
the strength of the convective cell increases with an increase in the
air layer thickness. In these cases, the air layer acts as a reservoir to
continuously supply air to the soil layer to sustain the convection.
As the Darcy number decreases from 0.05 to 0.0005, the primary
flow structure remains the same, but the overall strength of the
convective flow decreases due to the added flow resistance in the
soil layer, which is also evident from the absence of a vigorous
thermal plume in the temperature field (Fig. 5). However, a thicker
air layer does produce a more noticeable effect of thermal buoy-
ancy. It is interesting to observe that the eye of convective cell al-
ways resides in the soil layer for L/ri 6 1 and it moves inside the air
layer only when L/ri > 1. From Fig. 5, the presence of a vigorous
thermal plume on top of the heated pipe can be clearly observed
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for Da P 0.005, which further confirms that the flow field is highly
convective when the soil layer is more permeable.

The effects of the air layer thickness and Darcy number on the
flow and temperature fields follow a similar trend when the
Rayleigh number increases to 105. For all Darcy numbers, the
strength of convective flow becomes more pronounced with an
increase in the Rayleigh number.

When comparing the flow fields obtained from the present
study with those of Oosthuizen and Naylor [8] with an imperme-
able interface, one notices that the major difference between these
two results is the formation of multi-cellular convection in the
upper fluid layer in the latter case. Because of the impermeable
interface, fluids on each side are not communicating and the re-cir-
culating cells in the upper fluid layer are formed independently
from the fluid in the lower porous layer. Accordingly, one observes
two separately formed thermal plumes in the temperature field
[8]. Due to the distinct differences observed, heat transfer results
from these two studies also differ significantly as will be discussed
in the following section.

3.3. Heat transfer results

The heat transfer results obtained from the present study are
evaluated in terms of the Nusselt number at the top boundary,
which is defined as

Nu ¼ �
Z 0

�w=ri
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Y¼ðLþdÞ=ri

dX: ð21Þ

The Nusselt number thus defined also represents the total heat
flux through the top boundary. By conservation of energy, this also
equals to the total heat flux dissipated from the pipe. The variation
of Nusselt numbers is shown in Fig. 6 as a function of the Darcy
number. As expected, the heat transfer rate increases with the
strength of thermal buoyancy (i.e., the Rayleigh number). It is ob-
served that Nusselt number can increase as high as five times when
Rayleigh number increases from 103 to 105. For a given Rayleigh
number, it is observed that Nusselt number increases most rapidly
when the Darcy number increases from 0.0005 to 0.005 whereas
the rate of increase (i.e., the slope) is not as steep when the Darcy
number increases further to 0.05. Also observed, the difference in
the heat transfer rate among various air layer thicknesses is not
significant at a low Rayleigh number, but becomes substantial
when the Rayleigh number increases.

To better analyze the heat transfer variation with the thickness
of superimposed air layer, Nusselt number is plotted as a function
of dimensionless layer thickness L/ri in Fig. 7. At a low Rayleigh
(a) (b

Fig. 7. Heat transfer results as a function of the air layer thic
number of 103 (Fig. 7(a)), the Nusselt number appears to increase
slightly as L/ri increases from 0.5 to 1, it then levels off with a fur-
ther increase in L/ri for Da = 0.05 but reduces for Da = 0.005 and
0.0005. At Ra = 104, one observes that the Nusselt number contin-
ues to decrease with an increase in the air layer thickness L/ri

(Fig. 7(b)). For Ra = 105, the variation of Nusselt number with air
layer thickness becomes more complicated (Fig. 7(c)). For
Da = 0.05 and 0.005, the Nusselt number first decreases with an in-
crease in the air layer thickness. After it reaches a minimum, it be-
gins to increase again with the air layer thickness. On the other
hand, for Da = 0.0005, the Nusselt number continues to decrease
with the air layer thickness and does not reach a minimal value
for the air layer thickness range considered in the present study.

It has been reported by Oosthuizen and Naylor [8] that there ex-
ists a critical fluid layer thickness that leads to a minimum heat
transfer rate from the buried pipe. Based on the results they ob-
tained, the critical thickness of the superimposed fluid layer L/ri

lies between 1 and 2. From the present study, our results show that
for Ra = 105 and Da = 0.05, a minimum Nusselt number was indeed
found in the same range of the fluid layer thickness. However, for
other Rayleigh and Darcy numbers, our results suggest that the
critical fluid layer thickness, when exists, would lie outside the
range previously reported (i.e., L/ri > 2). Clearly, the difference in
the prediction of the critical fluid layer thickness is due to the nat-
ure of the interface (i.e., permeable vs. impermeable). Since the
interface is more likely to be permeable for most applications,
the prediction from the present results should be more useful. Par-
ticularly, the result in Fig. 7(c) has suggested that the critical air
layer thickness increases with a reduction in the permeability of
soil.
4. Conclusion

Heat transfer by natural convection from a pipe buried horizon-
tally in semi-infinite soil with a superimposed air layer has been
numerically examined in this study. The effects of Rayleigh num-
ber, Darcy number, and air layer thickness on the heat transfer re-
sults have been investigated. The present result shows that heat
dissipation from the pipe decreases when the soil becomes less
permeable. Also, a critical air layer thickness appears to exist that
leads to a minimum heat transfer from the pipe. For specific appli-
cations in soil or in-floor heating, this is to be avoided. Because of
the difference in the nature of the interface, the critical air layer
thickness predicted from the present study is greater than that
from the previous study. The present result has further shown that
the critical air layer thickness is a complicated function of the Ray-
) (c)

kness L/ri for (a) Ra = 103, (b) Ra = 104, and (c) Ra = 105.
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leigh number and Darcy number. It suggests that the critical air
layer thickness increases with a reduction in the permeability of
the soil layer for a given Rayleigh number.

While the present study has extended several earlier studies on
heat transfer from a buried pipe with the consideration of both
porous medium and superimposed fluid layer, the finding from
the present study has an important implication for the application
of soil or in-floor heating systems that an analysis of the complete
system (which includes the porous medium and the superimposed
fluid layer) is required to obtain reliable and more accurate heat
transfer results. Previous analyses using only isolated porous med-
ium (soil layer) with simplified interface condition may not be suf-
ficient to obtain the complete heat transfer characteristics of a
buried pipe, particularly for the prediction of minimum heat trans-
fer and critical buried depth. Normally, the criterion for a critical
fluid layer thickness can be easily met for applications in an open
field. However, for applications in a limited enclosed space, one
needs to make sure that the fluid layer is sufficiently thick to have
a better heat transfer result.
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